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Abstract

This paper is devoted to modeling elastic behavior of laminated composite shells, with special emphasis on
incorporating interfacial imperfection. The conditions of imposing traction continuity and displacement jump across

each interface are used to model imperfect interfaces. Vanishing transverse shear stresses on two free surfaces of a shell
eliminate the need for shear correction factors. A linear theory underlying elastostatics and kinetics of laminated
composite shells in a general con®guration is presented from Hamilton's principle. In the special case of vanishing

interfacial parameters, this theory reduces to the conventional third-order zigzag theory for perfectly bonded laminated
shells. Numerical results for bending and vibration problems of laminated circular cylindrical panels are tabulated and
plotted to indicate the in¯uence of the interfacial imperfection. # 2000 Elsevier Science Ltd. All rights reserved.
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Nomenclature

yi curvilinear coordinates
t time
h shell thickness
�m�h distance between mth interface and reference surface
mba shifter
bba mixed curvature tensor
aij metrics of contravariant bases of reference surface
dba mixed Kronecker delta
nj, Vj surface and space components of displacements
eij strain tensor
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1. Introduction

The anisotropic constitution of laminated composite structures often results in unique phenomena
that can occur at vastly di�erent geometric scales. To investigate random and deterministic
heterogeneous particulate and ®brous composites at reinforcement-matrix level, micromechanics-based
research is needed. The statistically equivalent single-layer theories for plates and shells are generally
capable of accurately describing the global response, whereas at the ply level discrete-layer and zigzag
theories are needed to determine the three-dimensional stress ®eld. A comprehensive review can be
found in the detailed coverage presented by Reddy (1997) for the ®rst time of traditional theories and
re®ned theories of laminated composite materials. Under the assumption that each lamina is statistically
homogeneous and its elastic properties have been determined either by experiments or from
micromechanics predictions, this paper only concerns itself with the area at the ply level of laminates.

In most analytical and numerical work on composite materials, a perfect interface between adjacent
laminae is assumed which implies continuous displacements and tractions across it. Therefore the
interface properties and structures are eliminated, despite the fact that the behavior of composite
materials is signi®cantly in¯uenced by the properties of interfaces. In many cases of interest, however,
the assumption of a perfect interface is inadequate. Examples for laminated composites could be either
the presence of interfacial damage caused by fatigue and environmental e�ects, or interphase material
which may be due to chemical interaction between the constituents or deliberately introduced in order
to improve the properties of composites. One of the practical applications has been pointed out by
Cheng et al. (1996a) in a class of new composite materials, such as carbon ®ber-reinforced aluminum
alloy laminates. The idea of weakened interfaces could also be used in smart structures to model an
adhesive layer that bonds the actuator to the structural components (Crawley and de Luis, 1987; Reddy
and Robbins, 1994). This is because the interphase layer is very thin such that its accurate analysis is
unnecessary and almost impossible. In addition, other possible applications can be in layered plates that
experience interlayer slip at a precracked interface such as a construction joint of reinforced concrete
slabs or the interface of nailed wooden plates (Toledano and Murakami, 1988).

The simplest approach used to characterize the imperfect interface is a linear spring-layer model. The
imperfect interface is replaced by a mathematical surface of vanishing thickness across which material
properties change discontinuously, with the continuous interfacial tractions being linearly proportional
to the displacement jump. Such a model has been e�ciently employed in micromechanics-based research
at the reinforcement-matrix level (e.g. Aboudi, 1987; Achenbach and Zhu, 1989; Benveniste and Dvorak,
1990; Hashin, 1990, 1991; Qu, 1993a, b; Zhong and Meguid, 1996) and was introduced by Cheng et al.

sij stress tensor
E ijkl elasticity tensor
�m�DVa displacement jumps across mth interface
�m�Rab space compliance coe�cient of mth interface
ui, ja generalized displacements on reference surface
r mass density
N �J �a, N �1�3, M�J �ab generalized forces and moments
I �J �ab, I �1�33 generalized inertias
L, F, r0 length, central angle and inner radius of cylindrical panel
�0�P3 external load
Vhii physical components of displacement
shiji physical components of stress
�m�Rhabi physical components of compliance coe�cient of mth interface.
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(1996a, b, 1997) in modeling laminated composite plates with weakened interfaces at the ply level. As an
extreme result of vanishing displacement jump, perfect bonding becomes only a special case and thus the
theories proposed by Cheng et al. (1996a, b, 1997) can also serve for analyzing mechanical behavior of
perfectly bonded laminated plates. In a similar approach, Schmidt and Librescu (1996) have also
presented a theoretical formulation for laminated composite plates featuring interlayer slips. As
concluded for shells with perfect interfaces (Librescu and Schmidt, 1991; Schmidt and Librescu, 1994),
some interesting theorems analogous to three-dimensional elasticity have been noted.

The present work proposes a displacement model satisfying the compatibility conditions for transverse
shear stresses both at layer interfaces and on the two free surfaces of the laminated composite shells. As
a result, there is no need for the use of shear correction factors and the number of unknowns is shown
to be ®ve, irrespective of the number of lamina, i.e. the same number as for the ®rst-order and third-
order smeared theories. Hamilton's principle is used to derive the ®eld equations and boundary
conditions which underlie linear dynamic response of laminated composite shells in general
con®guration. Numerical results are given to illustrate the e�ects of interfacial imperfection on bending
and vibration behavior of laminated composite panels.

2. Field equations and boundary conditions

Figure 1 shows an undeformed laminated composite shell consisting of k homogeneous anisotropic
laminae with uniform thickness. For convenience, the undeformed lower surface of the shell is chosen as
the reference surface de®ned by y3 � 0 and y3-axis is normal to the shell surface, where fyi g (i � 1, 2, 3)
is a curvilinear coordinate system. Let �m�O (m � 0, . . . , k) denote the lower surface (m � 0), the kÿ 1
interfaces between the mth and (m� 1)th laminae (m � 1, . . . , kÿ 1) and the upper surface (m � k) of
the shell. Thus, the mth lamina is among the range of [�mÿ1�h, �m�h] in the y3-direction, where �m�h
(m � 0, . . . , k) is the distance between �m�O and �0�O. Particularly, �0�h � 0 and �k�h � h, where h denotes
the total thickness of the shell.

In the following developments, � �,i denotes a partial derivative with respect to the corresponding

Fig. 1. Geometry of a laminated shell.
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spatial coordinate, while � �ki and � �ja designate covariant derivatives with respect to the space and the
reference surface metrics, respectively. The Einsteinian summation convention applies to repeated indices
of tensor components where Latin indices ranging from 1 to 3 while Greek indices are from 1 to 2. The
partial derivative of the Heaviside step function H�y3 ÿ �m�h� with respect to y3 is stipulated as the right-
hand one, thus H,3�y3 ÿ �m�h� � 0.

The general representation of displacements for any point of the shell can be written, with respect to
the contravariant bases of the reference surface, as

nj
ÿ
yi; t

�
�
Xkÿ1
m�0

X1
n�0
�m�u�

n�
j �ya; t��y3 ÿ �m�h�nH�y3 ÿ �m�h�, �1�

where the term �m�u�0�j �ya; t�, which was excluded for perfect interfaces by He (1994, 1995), has been
retained in the present theory. This term represents a displacement jump across the interface �m�O and
hence provides a possible incorporation of imperfect interfaces of laminated shells, e.g. weakened
bonding or even delamination. The case of a perfect interface corresponds to this term being zero.

The displacements of the space components can be expressed in terms of their shifted surface
components as

Va � mbavb, V3 � v3, �2�
and the covariant derivatives of the space components are connected with their surface counterparts as
(Naghdi, 1963; Librescu, 1975)

Vakb � mva
ÿ
vvjb ÿ bvbv3

�
, Vak3 � mvavv,3, V3ka � v3,a � bvavv, V3k3 � v3,3, �3�

with

mba � dba ÿ y3bba , bba � ÿGb
a3j�0�O, bab � G3

abj�0 �O, �4�

where dba is the mixed Kronecker delta function, Gi
jkj�0�O denotes the Christo�el symbol of the second

kind with respect to �0�O.
The strain component eij and stress component sij of the shell are expressed as

eij � 1

2

ÿ
Vikj � Vjki

�
, sab � H aboreor, sa3 � 2E a3o 3eo3, �5�

where E ijkl is the space component of the elastic moduli associated with an elastic anisotropic body, and
H abor � E abor ÿ E ab33E 33or=E 3333. The second and third parts of eqn (5) hold valid only under the
assumptions that each lamina possesses elastic symmetry with respect to surfaces parallel to �0�O and
that s33 is vanishingly small.

As used for the case of laminated plates, the spring-layer model characterizing an imperfect interface
in shear is

sb3�yr,�m�h�; t� � sb3�yr,�m�hÿ; t�, �m�DVa � �m�Rab�yr �sb3�yr,�m�h; t�, �m � 1, . . . , kÿ 1�, �6�
where �m�Rab represents the space compliance coe�cient of the mth spring-layer interface �m�O. A
detailed discussion on this model may be found in the work of Cheng et al. (1996a, b, 1997). It is
emphasized that the interface parameter �m�Rab depending upon yr implies the non-uniform bonding
strength at the interface �m�O (m � 1, . . . , kÿ 1), i.e., the most general form of interfacial imperfection in
shear is incorporated in the present theory. The vanishing �m�Rab corresponds to the mth interface being
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perfect. A slightly weakened interface may be modeled by small values of �m�Rab, which are spatial
functions. This means that di�erent interfacial bonding strength on the interfacial area can be
characterized by di�erent values of the interfacial parameter.

Based on a three-phase model and generalized self-consistent scheme for random composites, a
theoretical evaluation of interfacial parameters was made by Hashin (1991) in terms of interphase
characteristics for isotropic deformation. However, such an e�cient scheme only applies to random
composites. Further theoretical work is needed on the estimation of the interfacial parameters, which
requires a knowledge of interfacial microstructures and is beyond the scope of this paper. In an
alternative way they can be determined experimentally either by direct shear test or through statistically
equivalent macroscopic moduli for imperfectly bonded layered media (Lai et al., 1997), in turn to
determine the interfacial damage parameters.

From the foregoing, an approximate displacement model for laminated composite shells may be
proposed as

va
ÿ
yi; t

�
� mbaub ÿ y3u3,a � hbajb, v3

ÿ
yi; t

�
� u3, �7�

where ui and ja are independent of the coordinate y3, an overview of the development for obtaining the
expression of hba can be found in Appendix A. This model has ensured the ful®llment of vanishing
transverse shear stresses on the two free surfaces and continuous tractions across interfaces.

It is assumed that the mass density r is independent of time t and that arbitrarily distributed normal
loads �0�p3�ya; t� and �k�p3�ya; t� are applied to the lower surface �0�O and the upper surface �k�O,
respectively. From Hamilton's principle�t0

0

��
V

sijdeij dVÿ
�
V

_V
i
d _Vir dVÿ

�
O
p3dV3 dO

�
dt � 0, �8�

the dynamic ®eld equations are derived as

M
�1�ab
jb ÿN �1�a ÿ I �1�ba �ub � I �2�ba �u3,b ÿ I �3�ba �jb � 0,

M
�2�ab
jab �N �1�3 � P3 ÿ I �1�33 �u3 ÿ

ÿ
I �2�ba �ua

�
jb�

�
I �4�ab �u3,a

�
jbÿ

�
I �6�ab �ja

�
jb� 0,

M
�3�ab
jb ÿN �2�a ÿN �3�a ÿ I �3�ab �ub � I �6�ab �u3,b ÿ I �5�ba �jb � 0, �9�

associated with either one of each of the following pairs of boundary conditions

nbM
�1�ab � 0, or dua � 0,

nb

�
M
�2�ba
ja ÿ I �2�ba �ua � I �4�ab �u3,a ÿ I �6�ab �ja

�
� 0, or du3 � 0,

nbM
�3�ab � 0, or dja � 0,

nbM
�2�ab � 0, or du3,a � 0, �10�

where
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�
N �1�a, N �2�a, N �1�3

�
�
�h
0

slbmvl
�
mavjb, h

a
vjb, bvb

�
m dy3, �11�

N �3�a �
�h
0

sl3
ÿ
mvlh

a
v,3 � bvlh

a
v

�
m dy3, �12�

�
M�1�ab,M�2�ab,M�3�ab

�
�
�h
0

slbmvl
h
mav , y

3dav , h
a
v

i
m dy3, �13�

�
I �1�ab, I �2�ab, I �3�ab, I �4�ab, I �5�ab, I �6�ab

�
�
�h
0

ralv
h
mavm

b
l , y

3davm
b
l , h

a
vm

b
l ,
ÿ
y3
�2
davd

b
l , h

a
vh

b
l ,

y3havd
b
l

i
m dy3,

�14�

I �1�33 �
�h
0

rm dy3, �15�

P3 � �k�m�k�p3 � �0�p3, �16�
aab in eqn (14) is the metrics of contravariant bases referred to the reference surface, and

m � det
ÿ
mba
�
,
�k�m � mj�k �O: �17�

For brevity, displacement-based ®eld equations are given in Appendix B. These equations need to be
solved with the boundary conditions of eqn (10) to obtain the unknowns ui and ja for any set of shell
parameters and the load parameter P3. The case of quasi-static deformation of the laminated shell
featuring interfacial damage coincides with the linear counterpart of Cheng and Kitipornchai (1998).
The ®eld equations and boundary conditions given by Cheng et al. (1996a) are recovered from the
present work in the special case of ¯at laminated plates. By setting �m�Rab � 0 (m � 1, . . . , kÿ 1), the
present ®eld equations and boundary conditions become those for perfect bonding. They are exactly the
same as those given by He (1994), and are also very similar to those proposed by Di Sciuva and Icardi
(1993) and Xavier et al. (1993, 1995).

3. Numerical example

The present theory can be applied to solve a wide range of complicated problems. However, complete
solutions to such problems require the determination of interface parameters either through theoretical
evaluation of interfacial properties and microstructures or experimental measurements. Since the
evaluation of such parameters is beyond the scope of this paper, the in¯uence of interfacial imperfection
on the global and local behavior of laminated composite shells will be investigated by restricting
attention to the e�ects of imperfect interfaces on their linear bending and vibration behavior. An
orthotropic laminated circular cylindrical panel of length L, central angle F and inner radius r0 will be
used as the example for analyzing such interfacial imperfection. The panel is simply supported at edges
y1 � 0, L and y2 � 0, F. Identically uniform bonding of the interfaces is assumed.
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Under the action of transverse normal pressure

�0�P3 � p0 sin

�
m1py

1

L

�
sin

�
m2py

2

F

�
eiot �18�

on the inner surface of the panel, exact solutions can easily be given for static bending
(m1 � m2 � 1, o � 0), and for free ¯exural vibration (p0 � 0). Details for obtaining closed-form
solutions are given in Appendix C for brevity.

For the geometry of the circular cylindrical panel, the following quantities are useful

a11 � 1, a22 � 1

r20
, a12 � a21 � 0,

b11 � 0, b22 � ÿr0, b12 � b21 � 0,

m11 � 1, m22 � 1� y3

r0
, m21 � m12 � 0: �19�

The physical components of tensors in the orthogonal bases are then de®ned by

�m�Rh11i � �m�R11,
�m�Rh12i �

1

r0 � y3
�m�R12,

�m�Rh22i �
1ÿ

r0 � y3
�2 �m�R22,

Vh1i � v1, Vh3i � v3, Vh2i �
1

r0
v2, sh11i � s11, sh13i � s13,

sh12i �
ÿ
r0 � y3

�
s12, sh23i �

ÿ
r0 � y3

�
s23, sh22i �

ÿ
r0 � y3

�2
s22: �20�

See Naghdi (1963) for more details. After the transformation (20), the quantities with subscripts
enclosed by a pair of angle brackets become physically meaningful, e.g. the physical meaning of �m�Rhabi
is the compliance coe�cient of the mth spring-layer interface.

With these physical components, the following dimensionless quantities are introduced as

S � r0
h
� 0:5, �V hai � 10EL

p0hS3
Vhai, �V h3i �

10EL

p0hS4
Vh3i,

�shabi �
10

p0S2
shabi, �s ha3i �

10

p0S
sha3i, �o �

�
L

h

�2
����������
rh2

ELS

s
o : �21�

The material chosen for numerical computation is a laminated panel composed of unidirectionally
aligned ®brous composites, with identical density, thickness and sti�ness properties for each lamina,
unless otherwise indicated,

EL=ET � 25, GLT=ET � 0:5, GTT=ET � 0:2, vLT � vTT � 0:25, �22�
where E is the tensile modulus, G is the shear modulus, v is Poisson's ratio and the subscripts L and T
refer to the directions parallel and normal to the ®bers, respectively.
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Table 1

Central de¯ection and stresses of a three-ply (908/08/908) laminated circular cylindrical panel under sinusoidal loading

S VB (1991) �R � 0 �R � 0:3 �R � 0:6 �R � 0:9

4 �V h3i
L

2
,
F
2
,0

� �
4.00 3.60671 4.54355 5.22412 5.68617

10 1.223 1.20335 1.56068 1.95346 2.36049

50 0.5495 0.54862 0.56474 0.58443 0.60760

100 0.4715 0.47110 0.47432 0.47827 0.48293

500 0.1027 0.10269 0.10270 0.10271 0.10272

4 �s h11i
L

2
,
F
2
,0

� �
ÿ0.2701 ÿ0.12923 ÿ0.15659 ÿ0.17584 ÿ0.18821

10 ÿ0.0791 ÿ0.05632 ÿ0.06436 ÿ0.07327 ÿ0.08248
50 ÿ0.0225 ÿ0.02167 ÿ0.02139 ÿ0.02106 ÿ0.02067
100 0.0018 0.00197 0.00220 0.00247 0.00280

500 0.0379 0.03788 0.03788 0.03789 0.03789

4 �s h11i
L

2
,
F
2
,h

� �
0.1270 0.12126 0.14641 0.16369 0.17444

10 0.0739 0.07231 0.08561 0.10028 0.11544

50 0.0712 0.07097 0.07215 0.07360 0.07531

100 0.0838 0.08370 0.08406 0.08450 0.08502

500 0.0559 0.05585 0.05585 0.05586 0.05586

4 �s h22i
L

2
,
F
2
,0

� �
ÿ9.323 ÿ10.52806 ÿ12.94523 ÿ14.80410 ÿ16.14023

10 ÿ5.224 ÿ5.30760 ÿ6.04312 ÿ6.87232 ÿ7.74757
50 ÿ3.987 ÿ3.98701 ÿ4.01326 ÿ4.04618 ÿ4.08560
100 ÿ3.507 ÿ3.50626 ÿ3.50900 ÿ3.51255 ÿ3.51690
500 ÿ0.7542 ÿ0.75451 ÿ0.75437 ÿ0.75419 ÿ0.75399

4 �s h22i
L

2
,
F
2
,h

� �
6.545 7.01022 8.51118 9.67634 10.52132

10 4.683 4.69967 5.30698 5.99277 6.71749

50 3.930 3.92646 3.95217 3.98441 4.02301

100 3.507 3.50478 3.50766 3.51137 3.51592

500 0.7895 0.78973 0.78959 0.78941 0.78921

4 sh12i�0,0,0� 0.1609 0.16242 0.19470 0.21369 0.22264

10 0.0729 0.07569 0.09431 0.11447 0.13494

50 0.0760 0.07639 0.07826 0.08055 0.08324

100 0.1038 0.10393 0.10455 0.10532 0.10622

500 0.0889 0.08886 0.08886 0.08887 0.08887

4 sh12i�0,0,h� ÿ0.1081 ÿ0.08998 ÿ0.01483 ÿ0.11201 ÿ0.11367
10 ÿ0.0374 ÿ0.03343 ÿ0.03944 ÿ0.04575 ÿ0.05193
50 0.0118 0.01228 0.01302 0.01391 0.01496

100 0.0478 0.04798 0.04840 0.04891 0.04951

500 0.0766 0.07660 0.07660 0.07661 0.07662

4 �s h13i 0;
F
2
,
h

3

� �
0.1736 0.13683 0.15432 0.16014 0.15798

10 0.0826 0.07746 0.09270 0.10888 0.12495

50 0.0894 0.08904 0.09096 0.09329 0.09604

100 0.1223 0.12213 0.12280 0.12363 0.12460

500 0.1051 0.10509 0.10509 0.10510 0.10511

4 �s h23i
L

2
, 0;

h

2

� �
2.329 2.00375 1.49511 1.09511 0.80258

10 3.264 3.24028 3.06610 2.86781 2.65714

50 3.491 3.48937 3.47683 3.46121 3.44259

100 3.127 3.12561 3.12009 3.11325 3.10511

500 0.691 0.69088 0.69068 0.69044 0.69015

L=h � 4S,F � p=4.
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Table 2

Central de¯ection and stresses of a two-ply (08/908) laminated circular cylindrical panel under sinusoidal loading

S VB (1991) �R � 0 �R � 0:3 �R � 0:6 �R � 0:9

4 �V h3i
L

2
,
F
2
, 0

� �
6.100 5.09696 5.37359 5.58604 5.73422

10 3.330 3.16576 3.23447 3.30525 3.37701

50 2.242 2.23717 2.23920 2.24141 2.24378

100 1.367 1.36665 1.36686 1.36710 1.36736

500 0.1005 0.10049 0.10049 0.10049 0.10049

4 �s h11i
L

2
,
F
2
, 0

� �
ÿ0.9600 ÿ0.71888 ÿ0.75165 ÿ0.77769 ÿ0.79659

10 ÿ0.1689 ÿ0.15665 ÿ0.15947 ÿ0.16267 ÿ0.16619
50 1.610 1.60510 1.60612 1.60720 1.60834

100 2.300 2.29788 2.29808 2.29830 2.29853

500 0.9436 0.94359 0.94359 0.94359 0.94359

4 �s h11i
L

2
,
F
2
, h

� �
0.2120 0.20710 0.21350 0.21842 0.22183

10 0.1930 0.19098 0.19327 0.19566 0.19811

50 0.2189 0.21866 0.21883 0.21901 0.21921

100 0.1871 0.18708 0.18711 0.18715 0.18719

500 0.0449 0.04491 0.04491 0.04491 0.04491

4 �s h22i
L

2
,
F
2
, 0

� �
ÿ1.789 ÿ1.11616 ÿ1.02562 0.94065 ÿ0.86547

10 ÿ1.343 ÿ1.20498 ÿ1.18396 ÿ1.16099 ÿ1.13648
50 ÿ0.9670 ÿ0.96152 ÿ0.96055 ÿ0.95946 ÿ0.95826
100 ÿ0.5759 ÿ0.57495 ÿ0.57475 ÿ0.57453 ÿ0.57428
500 ÿ0.0339 ÿ0.03392 ÿ0.03392 ÿ0.03392 ÿ0.03391

4 �s h22i
L

2
,
F
2
, h

� �
10.31 12.07122 12.70830 13.27148 13.74040

10 10.59 10.95205 11.10224 11.26302 11.43170

50 8.937 8.95433 8.95822 8.96262 8.96753

100 5.560 5.56430 5.56450 5.56475 5.56506

500 0.4345 0.43460 0.43460 0.43460 0.43460

4 �s h12i�0,0,0� 0.2812 0.22653 0.22952 0.23104 0.23128

10 0.2325 0.22105 0.22265 0.22425 0.22581

50 0.3449 0.34440 0.34463 0.34487 0.34514

100 0.3452 0.34514 0.34519 0.34524 0.34530

500 0.1045 0.10448 0.10448 0.10449 0.10449

4 �s h12i�0,0,h� ÿ0.2007 ÿ0.16858 ÿ0.16711 ÿ0.16463 ÿ0.16148
10 ÿ0.1247 ÿ0.11819 ÿ0.11803 ÿ0.11781 ÿ0.11752
50 0.0784 0.07842 0.07849 0.07855 0.07862

100 0.1819 0.18187 0.18188 0.18188 0.18188

500 0.0925 0.09245 0.09245 0.09245 0.09245

4 �s h13i 0;
F
2
,
h

4

� �
0.2758 0.21269 0.21215 0.21053 0.20812

10 0.1591 0.15053 0.15054 0.15051 0.15044

50 ÿ0.0448 ÿ0.04424 ÿ0.04428 ÿ0.04432 ÿ0.04436
100 ÿ0.1512 ÿ0.15097 ÿ0.15097 ÿ0.15097 ÿ0.15097
500 ÿ0.0841 ÿ0.08409 ÿ0.08409 ÿ0.08409 ÿ0.08409

4 �s h23i
L

2
, 0,

3h

4

� �
4.440 5.48863 5.73007 5.95882 6.16301

10 5.457 5.68891 5.73936 5.79491 5.85457

50 4.785 4.79505 4.79597 4.79707 4.79837

100 2.972 2.97454 2.97446 2.97440 2.97436

500 0.227 0.22746 0.22746 0.22745 0.22745

L=h � 4S,F � p=4.
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The interface parameters are taken as �m�Rhabi � dab �Rh=ET for each lamina, where �R is a
dimensionless quantity and dab is the Kronecker delta symbol. This assumption leads to �m�DVhai �
�Rhsha3i=ET. It means that the interfaces of the laminated shells are equally weakened. The degree of
weakness of each interface is uniform in all directions and locations, and equal degree of weakness is
assumed for all interfaces.

Tables 1 and 2 show the dimensionless central de¯ection and stresses of three-ply and two-ply panels
for various values of �R , together with comparative benchmark results given by Varadan and Bhaskar
(1991) (denoted as VB, 1991 in Tables 1 and 2, as well as in Figs. 2±8) for perfect interfaces calculated
from three-dimensional elasticity. As is well known in the literature, most theories for perfectly bonded
plates and shells, which make use of a priori assumption of through-the-thickness displacement
distribution, fail to predict su�ciently accurately the transverse shear stresses for moderately thick and
very thick plates and shells directly from the constitutive equations, even though interface continuity
conditions of tractions and displacements have been imposed. Instead, they are evaluated accurately
from the equilibrium equations. In similar fashion, the trend of curves showing variations of the
interfacial stresses with �R calculated directly from constitutive relations seems to be physically
unreasonable, see the work by Cheng et al. (1996a). Therefore the transverse shear stresses in Tables 1
and 2, as well as in Figs. 7 and 8, were calculated from the equilibrium equation sakkk � 0. Some
comments on the use of an a posteriori calculation of such components by means of three-dimensional
equilibrium and constitutive relations were given by Noor and Peters (1989), Noor and Burton (1990)

Fig. 2. (a, b) Through-the-thickness in-surface displacement �V h1i of a three-ply (908/08/908) laminated circular cylindrical panel

(L=h � 4S,F � p=4).
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Fig. 4. (a, b) Through-the-thickness bending stress �s h11i of a three-ply (908/08/908) laminated circular cylindrical panel

(L=h � 4S,F � p=4).

Fig. 3. (a, b) Through-the-thickness in-surface displacement �V h2i of a three-ply (908/08/908) laminated circular cylindrical panel

(L=h � 4S,F � p=4).
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Fig. 6. (a, b) Through-the-thickness bending stress �s h12i of a three-ply (908/08/908) laminated circular cylindrical panel

(L=h � 4S,F � p=4).

Fig. 5. (a, b) Through-the-thickness bending stress �s h22i of a three-ply (908/08/908) laminated circular cylindrical panel

(L=h � 4S,F � p=4).
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Fig. 8. (a, b) Through-the-thickness transverse shear stress �s h23i of a three-ply (908/08/908) laminated circular cylindrical panel

(L=h � 4S,F � p=4).

Fig. 7. (a, b) Through-the-thickness transverse shear stress �s h13i of a three-ply (908/08/908) laminated circular cylindrical panel

(L=h � 4S,F � p=4).
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and Lee and Cao (1996). Tables 3 and 4 give the ®rst four frequencies of three-ply and two-ply
composite panels. Tables 5 and 6 show frequency values of three-ply panel for di�erent values of F or
EL=ET when vibrating in its fundamental ¯exural mode. The higher-order zigzag solution obtained by
Xavier et al. (1995) (denoted as XCL, 1995 in Tables 3±6) for perfect interfaces is also given for
comparison.

When the theory is used to consider the special case of perfect interfaces, the present results for �R � 0
are exactly the same as given by He (1994). In that paper, as well as the paper by Xavier et al. (1993),
comparison has been made with an exact three-dimensional elasticity solution and several other shell
theories, con®rming the high accuracy achieved and the necessity of using the third-order zigzag
approach. Therefore, assessment of the present theory for the case of perfect bonding is unnecessary. It
is worth noting that there are two causes for slight di�erence between the present results for perfect
interfaces and the results given by Xavier et al. (1993, 1995) for vibration problems as shown in Tables
3±6 and for bending problems which are not given herein. One results from slightly di�erent
displacement assumptions, while another is due to the di�erent choices of the reference surface. The
location of the reference surface is related with, e.g. for a circular cylindrical shell, the term h=�r0 � h0�,
where h0 denotes the distance between the reference surface and the lower surface of the shell, being
zero for the present theory and h/2 for the theory of Xavier et al. (1993, 1995). The term h=r0 is

Table 3

Natural frequencies of a three-ply (908/08/908) laminated circular cylindrical panel

S (m1, m2) XCL(1995) �R � 0 �R � 0:3 �R � 0:6 �R � 0:9

4 (1,1) 12.06 11.99395 10.46062 9.51144 8.90386

10 12.99 12.95592 11.66571 10.57431 9.67627

20 11.25 11.23782 10.76221 10.26312 9.76555

50 8.20 8.20638 8.14615 8.07443 7.99254

100 7.11 7.11737 7.10816 7.09693 7.08374

500 10.68 10.70899 10.70894 10.70888 10.70881

4 (2, 1) 12.45 12.38716 10.89474 9.97441 9.38532

10 13.59 13.56426 12.32296 11.28327 10.43676

20 12.41 12.41403 11.97924 11.52694 11.08049

50 11.47 11.50035 11.45682 11.40519 11.34654

100 13.33 13.37722 13.37225 13.36619 13.35909

500 27.33 27.45223 27.45221 27.45218 27.45216

4 (1, 2) 34.88 34.63088 32.53590 31.71714 31.43851

10 39.85 39.67459 34.31803 30.72844 28.27173

20 41.21 41.30724 37.13336 33.59432 30.67520

50 32.72 32.70070 31.69756 30.59182 29.43239

100 24.19 24.18117 23.97007 23.71829 23.43030

500 11.45 11.44624 11.44239 11.43766 11.43205

4 (2, 2) 34.98 34.73297 32.64673 31.82869 31.54784

10 39.96 39.78115 34.43379 30.85229 28.40182

20 41.53 41.42976 37.25946 33.72556 30.81249

50 32.94 32.91889 31.91951 30.81842 29.66449

100 24.66 24.65934 24.45170 24.20414 23.92110

500 15.42 15.43436 15.43149 15.42797 15.42380

L=h � 5S,F � p=3.
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connected with the term h=�r0 � h=2� through an in®nite power series, if using Taylor expansion. Since
only ®nite orders of the term h=�r0 � h0� are retained in approximate theories for shells, it would be
impossible to give identical results from the theories with di�erent reference surfaces, even if under
identical displacement assumptions. However, the di�erence between the results only has the order of
h=�r0 � h0� higher than retained. In the limit of ¯at plates the di�erence resulting from the latter cause
vanishes as r041. See Cheng et al. (1996a, 1997) for perfect interfaces where the lower plane of plates
was chosen as the reference plane and Di Sciuva (1992) and Cho and Parmerter (1992, 1993) with the
mid-plane being the reference plane.

The interfacial parameters �R � 0, 0:3, 0:6, 0:9 represent a decreasingly sti� interfacial strength, i.e. a
progressively weakened bonding. Therefore increasing �R means relaxation of the interfacial bonding
strength, and hence reduction in the overall rigidity of the shell. For the overall elastic response of
panels, it is seen from Table 1±6 that due to weakening of the interfacial bond, the rigidity of panels
decreases, which leads to increasing central de¯ection of static bending and decreasing frequencies of
¯exural vibration, for the same shell con®guration. As S decreases the static de¯ection shown in Tables
1 and 2 for bending problems increases faster with larger values of �R .

To give a better understanding of the way in which local elastic response is a�ected by progressively
weakened interfaces, Figs. 2±8 show, respectively, the variation of dimensionless in-surface displacement,

Table 4

Natural frequencies of a two-ply (908/08) laminated circular cylindrical panel

S (m1, m2) XCL (1995) �R � 0 �R � 0:3 �R � 0:6 �R � 0:9

4 (1, 1) 11.13 10.78996 10.53890 10.32897 10.15966

10 7.87 7.82445 7.77139 7.71659 7.66071

20 5.96 5.95669 5.94678 5.93612 5.92475

50 5.05 5.05347 5.05260 5.05165 5.05060

100 5.71 5.72609 5.72595 5.72579 5.72561

500 11.51 11.54561 11.54560 11.54559 11.54558

4 (2, 1) 11.85 11.53170 11.26504 11.03931 10.85434

10 9.06 9.03172 8.97776 8.92138 8.86327

20 8.15 8.16766 8.15808 8.14752 8.13603

50 9.74 9.77587 9.77479 9.77355 9.77213

100 12.97 13.02946 13.02916 13.02881 13.02840

500 28.32 28.45987 28.45984 28.45981 28.45978

4 (1, 2) 37.89 35.20104 34.79280 34.79185 35.05319

10 31.40 30.74479 30.20459 29.71072 29.27030

20 23.92 23.76072 23.60212 23.43858 23.27201

50 15.46 15.43501 15.41644 15.39646 15.37513

100 11.05 11.04280 11.03948 11.03589 11.03204

500 6.26 6.26202 6.26197 6.26191 6.26185

4 (2, 2) 38.10 35.42569 35.00518 34.99633 35.25319

10 31.69 31.03514 30.48512 29.98168 29.53219

20 24.24 24.08981 23.92873 23.76246 23.59295

50 16.03 16.01226 15.99376 15.97381 15.95249

100 12.28 12.28213 12.27899 12.27557 12.27188

500 12.94 12.97836 12.97832 12.97827 12.97821

L=h � 5S,F � p=3.
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bending stress and transverse shear stress distribution through the shell thickness. In practice, the curing
process for certain composites is augmented by introducing a very thin adhesive layer in the interfaces in
order to reduce the interfacial stresses. Consistently with the foregoing, Fig. 8(a, b) con®rms this
expectation that the dominant interfacial stress �s h23i, rather than the minor interfacial stress �s h13i in Fig.
7, decreases signi®cantly as the interfacial parameter increases, especially for small values of S. However,
it is also clear from the theoretical prediction that the reduction in dominant interfacial stress �s h23i is
achieved at the expense of increases in overall de¯ection.

The ®nal example is taken to demonstrate the e�ect of localized weakness of interfacial bonding. The
area of weakly bonding is chosen within a small patch in the range of y1=L 2 �0:3, 0:4�, and
y2=F 2 �0:3, 0:4�, and the bonding strength is assumed to be uniform as before. A bending problem is
considered with the same shell con®guration and loading, except the localized interfacial imperfection.
Since an exact solution for the problem is impossible, an approximate solution is presented. By means
of the Galerkin technique, a solution satisfying the simply supported boundary conditions is assumed in
the same form as eqn (C1) in Appendix C. The details of solution are omitted, only central de¯ection
curves in relation to S are given in Fig. 9. Although localized interfacial weakness is far more practical
than uniform weakness over entire interfaces, it must be noted that the results shown in Fig. 9 only
exhibit qualitative behavior of the shell. This is because we only assume a very simple form of solution
using the Galerkin technique. Furthermore, a linearized interfacial model may not be appropriate in
practical applications as inconsistency results from the model. Therefore, more sophisticated interfacial
models will be necessary to develop new theories.

Table 5

Natural frequencies of a three-ply (908/08/908) laminated circular cylindrical panel

S F XCL (1995) �R � 0 �R � 0:3 �R � 0:6 �R � 0:9

4 p=3 12.06 11.99395 10.46062 9.51144 8.90386

10 12.99 12.95592 11.66571 10.57431 9.67627

20 11.25 11.23782 10.76221 10.26312 9.76555

50 8.20 8.20638 8.14615 8.07443 7.99254

100 7.11 7.11737 7.10816 7.09693 7.08374

4 p=2 5.81 5.78784 5.09342 4.60726 4.26328

10 5.81 5.80312 5.49605 5.20235 4.93480

20 5.42 5.42993 5.36061 5.28276 5.19960

50 6.21 6.22409 6.21946 6.21386 6.20736

100 8.14 8.16500 8.16454 8.16399 8.16333

4 2p=3 3.36 3.35809 3.13668 2.97307 2.85318

10 4.02 4.02887 3.97886 3.92810 3.87931

20 5.05 5.06662 5.05968 5.05165 5.04278

50 7.62 7.65320 7.65288 7.65248 7.65201

100 10.70 10.74564 10.74561 10.74557 10.74553

4 5p=6 2.77 2.77869 2.74840 2.72498 2.70721

10 4.15 4.16472 4.16080 4.15662 4.15239

20 5.79 5.81476 5.81432 5.81380 5.81321

50 9.11 9.15694 9.15692 9.15690 9.15687

100 12.88 12.94218 12.94218 12.94217 12.94217

L=h � 5S,m1 � m2 � 1.
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Fig. 9. Central de¯ection �V h3i of a three-ply (908/08/908) laminated circular cylindrical panel (L=h � 4S,F � p=4).

Table 6

Natural frequencies of a three-ply (908/08/908) laminated circular cylindrical panel

S EL/ET XCL (1995) �R � 0 �R � 0:3 �R � 0:6 �R � 0:9

4 2 23.78 23.75938 22.09042 20.50491 19.06674

10 17.47 17.47467 17.17775 16.83611 16.46022

20 13.04 13.04730 12.99062 12.92237 12.84323

50 9.18 9.81857 9.81356 9.80744 9.80022

100 9.85 9.85655 9.85592 9.85515 9.85424

4 5 19.70 19.65296 17.52798 15.79736 14.41834

10 16.23 16.22344 15.63297 14.99828 14.34967

20 12.37 12.36674 12.23883 12.08785 11.91707

50 8.99 8.99085 8.97857 8.96360 8.94598

100 8.49 8.49503 8.49338 8.49137 8.48898

4 10 16.29 16.23406 14.14834 12.64254 11.55031

10 15.10 15.09007 14.17882 13.28109 12.43849

20 11.96 11.95545 11.72130 11.45410 11.16326

50 8.61 8.61621 8.59175 8.56208 8.52745

100 7.83 7.84088 7.83744 7.83322 7.82824

4 15 14.32 14.26721 12.37397 11.09644 10.21788

10 14.26 14.24418 13.14101 12.12152 11.21806

20 11.68 11.67951 11.35337 10.99247 10.61252

50 8.43 8.43254 8.39600 8.35194 8.30090

100 7.51 7.51388 7.50856 7.50206 7.49439

L=h � 5S,F � p=3,m1 � m2 � 1.
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4. Conclusions

This work represents an extension of linear elastodynamic modeling of laminated composite plates
(Cheng et al., 1996a) to the case of shells in general con®guration, with particular attention paid to the
in¯uence of interfacial imperfection. To do this, a spring-layer model as employed in micromechanics is
used in a macrostructural analysis environment to model non-uniform and imperfect interfaces of
laminated composite shells. The proposed theory has the same advantages as conventional high-order
theory. Moreover, it reduces to the zigzag shell theory in the special case of vanishing interface
parameters. Numerical results reveal the important feature that interfacial stresses are reduced by
weakening the interfacial bonding.
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Appendix A

It is assumed that the transverse normal stress s33 for the shell problem under consideration is
negligibly small compared with other stress components, so that it is ignored in the present paper as in
most other theories for plates and shells. The displacement model of the shell can be approximately
expressed by truncating eqn (1) as

va
ÿ
yi; t

�
� ua � cay

3 � ja

ÿ
y3
�2�Zaÿy3�3�Xkÿ1

m�1

h
�m�Dva � �m�ua

ÿ
y3 ÿ �m�h

�i
H
ÿ
y3 ÿ �m�h

�
,

v3
ÿ
yi; t

�
� u3, �A1�

where �0�u�0�i , �0�u�1�a , �0�u�2�a , �0�u�3�a , �m�u�0�a and �m�u�1�a in eqn (1) have been replaced by the quantities
ui, ca, ja, Za,

�m�Dva and �m�ua, respectively. Theories developed for calculating separation and slipping
delamination need more terms than are retained by eqn (A1) (see Gu and Chattopadhyay, 1996).

The compatibility conditions of transverse shear stresses on both free surfaces of the shell, as well as
the interface conditions, are now used to reduce the number of unknowns in eqn (A1). In the absence of
tangential tractions on �0�O and �k�O, eqns (A1), (2), (3) and (5), parts one and three, give

ca � ÿu3,a ÿ bbaub, Za � d b
ajb � eba

Xkÿ1
m�1
�m�xb, �A2�

where, denoting �m�mbo � mbo j�m�O and �m̂ÿ1ba� as the inverse of m̂ba � mba jy3�2h=3,

d b
a � ÿ

2

3h

ÿ
m̂ÿ1

�o
a

�
dbo ÿ

h

2
bbo

�
, eba � ÿ

1

3h2

ÿ
m̂ÿ1

�b
a ,

�m�xo � bbo
�m�Dvb � �m�mbo �m�ub: �A3�

The interface condition, the ®rst part of eqn (6), leads to the following 2(kÿ 1) linearly algebraic
equations involving the 2(k ÿ 1) unknowns �i �xa (i � 1, . . . , kÿ 1),
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ÿ�i�1�E a3o3 ÿ �i�E a3o3
�(h

2db�i�o hÿ bb�i�o h2 � d b
l

�
3dl�i�o h2 ÿ 2bl�i�o h3

�i
jb �

Xi
m�1
�m�xo

� ebl

�
3dl�i�o h2 ÿ 2bl�i�o h3

�Xkÿ1
m�1
�m�xb

)
� �i�E a3o3�i�xo � 0, �i � 1, . . . , kÿ 1�;

�A4�

which determine the relationship between �i �xo and jl as

�i�xo � �i�f l
ojl, �i � 1, . . . , kÿ 1�: �A5�

The interface condition, the second part of eqn (6), and the third part of eqn (A3), give

�i�Dva � �i�cdajd,
�i�ua � �i�adajd, �i � 1, . . . , kÿ 1�, �A6�

where

�i�c
d
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�
�i�m
ÿ1
�r
a
�i�Rrv�yr��i�1�E v3o3
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d
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�
, �i � 1, . . . , kÿ 1�: �A7�

The coe�cients �i �cda and �i �ada are only related with the interface properties, the material elasticity
properties and geometry of laminates.

Substituting eqns (A2) and (A6) into eqn (A1) results in the displacement model of eqn (7),
where

hba � dba
ÿ
y3
�2� d b

a � ela

Xkÿ1
m�1

�m�f b
l

!ÿ
y3
�3�Xkÿ1

m�1

h
�m�c

b
a � �m�a

b
a

ÿ
y3 ÿ �m�h

�i
H
ÿ
y3 ÿ �m�h

�
: �A8�

Appendix B

By using eqns (7), (2), (3) and (5), eqns (11)±(13) can be rewritten as

N �1�a � A�1�adud � B �1�adrudjr ÿ A�1�a3u3 ÿ B �2�adru3,dr � A�2�adjd � B �3�adrjdjr,

N �2�a � A�2�daud � B �4�adrudjr ÿ A�2�a3u3 ÿ B �5�adru3,dr � A�3�adjd � B �6�adrjdjr,

N �3�a � A�4�adjd,
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N �1�3 � A�1�d3ud � B �1�dr3udjr ÿ A�1�33u3 ÿ B �2�dr3u3,dr � A�2�d3jd � B �3�dr3jdjr,

M�1�ab � B �1�dabud � C �1�abdrudjr ÿ B �1�ab3u3 ÿ C �2�abdru3,dr � B �4�dabjd � C �3�abdrjdjr,

M�2�ab � B �2�dabud � C �2�drabudjr ÿ B �2�ab3u3 ÿ C �4�abdru3,dr � B �5�dabjd � C �5�abdrjdjr,

M�3�ab � B �3�dabud � C �3�drabudjr ÿ B �3�ab3u3 ÿ C �5�drabu3,dr � B �6�dabjd � C �6�abdrjdjr: �B1�

Substituting the resulting expressions into eqn (9) then yields the displacement-based ®eld equations as
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�2�rb3
jb � B

�2�ar3
ja

�
u3,r

ÿ
�
2B �2�dr3 � C

�4�abdr
jab

�
u3,dr ÿ

�
C
�4�abdr
jb � C

�4�badr
jb

�
u3,dra ÿ C �4�abdru3,abdr

�
�
A�2�d3 � B

�5�dab
jab

�
jd �

�
B �3�dr3 � B

�5�dar
ja � B

�5�drb
jb � C

�5�abdr
jab

�
jdjr

�
�
B �5�dar � C

�5�abdr
jb � C

�5�badr
jb

�
jdjra � C �5�abdrjdjrab

�P3 ÿ I �1�33 �u3 ÿ
ÿ
I �2�ba �ua

�
jb�

�
I �4�ab �u3,a

�
jbÿ

�
I �6�ab �ja

�
jb� 0,

ÿ
�
A�2�da ÿ B

�3�dab
jb

�
ud �

�
B �3�dar ÿ B �4�adr � C

�3�drab
jb

�
udjr � C �3�drabudjrb
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�
�
A�2�a3 ÿ B

�3�ab3
jb

�
u3 ÿ B �3�ar3u3,r �

�
B �5�adr ÿ C

�5�drab
jb

�
u3;dr ÿ C �5�drabu3,drb

ÿ
�
A�3�ad � A�4�ad ÿ B

�6�dab
jb

�
jd �

�
B �6�dar ÿ B �6�adr � C

�6�abdr
jb

�
jdjr � C �6�abdrjdjrb

ÿI �3�ab �ub � I �6�ab �u3,b ÿ I �5�ba �jb � 0, �B2�

where

�
A�1�ad, A�2�ad, A�3�ad

�
�
�h
0

H lbormsom
v
l

h
mavjbm

d
sjr, m

a
vjbh

d
sjr, h

a
vjbh

d
sjr
i
m dy3,

A�4�ad �
�h
0

E l3o3
�
mso h

d
s,3 � bso h

d
s

� ÿ
mvlh

a
v,3 � bvlh

a
v

�
m dy3,

�
A�1�a3, A�2�a3, A�1�33

�
�
�h
0

H lbormsom
v
lbsr

�
mavjb, h

a
vjb, bvb

�
m dy3,

�
B �1�adr, B �2�adr, B �3�adr, B �4�adr, B �5�adr, B �6�adr

�

�
�h
0

H lbormsom
v
l

h
mavjbm

d
s, y

3mavjbd
d
s, m

a
vjbh

d
s, h

a
vjbm

d
s, y

3havjbd
d
s, h

a
vjbh

a
s

i
m dy3,

�
B �1�ab3, B �2�ab3, B �3�ab3

�
�
�h
0

H lbormsom
v
lbsr

h
mav , y

3dav , h
a
v

i
m dy3,

�
C �1�abdr, C �2�abdr, C �3�abdr, C �4�abdr, C �5�abdr, C �6�abdr

�

�
�h
0

H lbormsom
v
l

h
mavm

d
s, y

3mavd
d
s, m

a
vh

d
s,
ÿ
y3
�2
davd

d
s, y

3davh
d
s, h

a
vh

d
s

i
m dy3: �B3�

Appendix C

Exact closed-form solutions to the example of Section 3 can be found by assuming the following form

�u1, j1 � � �U1, F1 � cos
m1py

1

L
sin

m2py
2

F
eiot,

�u2, j2 � � �U2, F2 � sin
m1py

1

L
cos

m2py
2

F
eiot,
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u3 � U3 sin
m1py

1

L
sin

m2py
2

F
eiot, �C1�

which yields, after substituting eqn (C1) into eqn (B2),

AX � F, �C2�
where

X � �U1 U2 U3 F1 F2 �T, F � �0 0ÿ p0 0 0�T, �C3�
and A is a 5 � 5 symmetric matrix (AIJ � AJI, I, J � 1, . . . , 5) where its elements, expressed in terms of
l1 � m1p=L and l2 � m2p=F, are

A11 � ÿl21C �1�1111 ÿ l22C
�1�1212 � I �1�11o2,

A12 � ÿl1l2
ÿ
C �1�1122 � C �1�1221

�
,

A13 � ÿl1B �1�113 � l31C
�2�1111 � l1l

2
2

ÿ
C �2�1122 � C �2�1212 � C �2�1221

�
ÿ l1I

�2�11o2,

A14 � ÿl21C �3�1111 ÿ l22C
�3�1212 � I �3�11o2,

A15 � ÿl1l2
ÿ
C �3�1122 � C �3�1221

�
,

A22 � ÿl22C �1�2222 ÿ l21C
�1�2121 � I �1�22o2,

A23 � ÿl2B �1�223 � l21l2C
�2�2211 � l32C

�2�2222 � l21l2
ÿ
C �2�2112 � C �2�2121

�
ÿ l2I

�2�22o2,

A24 � ÿl1l2
ÿ
C �3�2211 � C �3�2112

�
,

A25 � ÿl22C �3�2222 ÿ l21C
�3�2121 � I �3�22o2,

A33 � ÿA�1�33 � 2l21B
�2�113 � 2l22B

�2�223 ÿ l 41C
�4�1111 ÿ l21l

2
2

ÿ
C �4�1122 � C �4�2211

�
ÿ l 42C

�4�2222

ÿ l21l
2
2

ÿ
C �4�1212 � C �4�1221 � C �4�2112 � C �4�2121

�
�
�
I �1�33 � l21I

�4�11 � l22I
�4�22

�
o2,

A34 � ÿl1B �3�113 � l31C
�5�1111 � l1l

2
2

ÿ
C �5�2211 � C �5�1212 � C �5�2112

�
ÿ l1I

�6�11o2,

A35 � ÿl2B �3�223 � l21l2C
�5�1122 � l32C

�5�2222 � l21l2
ÿ
C �5�1221 � C �5�2121

�
ÿ l2I

�6�22o2,

A44 � ÿA�4�11 ÿ l21C
�6�1111 ÿ l22C

�6�1212 � I �5�11o2,
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A45 � ÿl1l2
ÿ
C �6�1122 � C �6�1221

�
,

A55 � ÿA�4�22 ÿ l22C
�6�2222 ÿ l21C

�6�2121 � I �5�22o2: �C4�
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